Mathematical Fundamentals of Compressive Sensing: Random matrices and ℓ_{1}-recovery
Justin Romberg, Georgia Tech ECE NMI, IISc, Bangalore, India February 20, 2015

Agenda

Today: Mathematical foundations of compressive sensing Random embeddings and recovery using ℓ_{1}

Saturday: Low rank recovery and bilinear problems in signal processing

Sunday: Dynamic recovery, subspace matching and CS on the continuum

Linear systems of equations are ubiquitous

Data Converter ADS5485
if TEXAS
INSTRUMENTS

Linear systems of equations are ubiquitous

All of these can be abstracted to

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}
$$

Linear systems of equations are ubiquitous

Model:

\boldsymbol{y} : data coming off of sensor
\boldsymbol{A} : mathematical (linear) model for sensor
\boldsymbol{x} : signal/image to reconstruct

Classical: When can we stably "invert" a matrix?

- Suppose we have an $M \times N$ observation matrix \boldsymbol{A} with $M \geq N$ (MORE observations than unknowns), through which we observe

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{0}+\text { noise }
$$

Classical: When can we stably "invert" a matrix?

- Suppose we have an $M \times N$ observation matrix \boldsymbol{A} with $M \geq N$ (MORE observations than unknowns), through which we observe

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{0}+\text { noise }
$$

- Standard way to recover x_{0}, use the pseudo-inverse

$$
\text { solve } \min _{\boldsymbol{x}}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} \quad \Leftrightarrow \quad \hat{\boldsymbol{x}}=\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{y}
$$

Classical: When can we stably "invert" a matrix?

- Suppose we have an $M \times N$ observation matrix \boldsymbol{A} with $M \geq N$ (MORE observations than unknowns), through which we observe

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{0}+\text { noise }
$$

- Standard way to recover x_{0}, use the pseudo-inverse

$$
\text { solve } \min _{\boldsymbol{x}}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} \quad \Leftrightarrow \quad \hat{\boldsymbol{x}}=\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{y}
$$

- Q: When is this recovery stable? That is, when is

$$
\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}_{0}\right\|_{2}^{2} \sim \| \text { noise } \|_{2}^{2} \quad ?
$$

Classical: When can we stably "invert" a matrix?

- Suppose we have an $M \times N$ observation matrix \boldsymbol{A} with $M \geq N$ (MORE observations than unknowns), through which we observe

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{0}+\text { noise }
$$

- Standard way to recover x_{0}, use the pseudo-inverse

$$
\text { solve } \min _{\boldsymbol{x}}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} \quad \Leftrightarrow \quad \hat{\boldsymbol{x}}=\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{y}
$$

- Q: When is this recovery stable? That is, when is

$$
\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}_{0}\right\|_{2}^{2} \sim \| \text { noise } \|_{2}^{2} \quad ?
$$

- A: When the matrix \boldsymbol{A} preserves distances ...

$$
\left\|\boldsymbol{A}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)\right\|_{2}^{2} \approx\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2} \quad \text { for all } \boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathbb{R}^{N}
$$

Sparsity

wavelet transform

zoom

Wavelet approximation

Take 1% of largest coefficients, set the rest to zero (adaptive)

approximated

rel. error $=0.031$

When can we stably recover an S-sparse vector?

$$
[y]=[
$$

- Now we have an underdetermined $M \times N$ system $\boldsymbol{\Phi}$ (FEWER measurements than unknowns), and observe

$$
\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}_{0}+\text { noise }
$$

When can we stably recover an S-sparse vector?

- Now we have an underdetermined $M \times N$ system $\boldsymbol{\Phi}$ (FEWER measurements than unknowns), and observe

$$
\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}_{0}+\text { noise }
$$

- We can recover \boldsymbol{x}_{0} when $\boldsymbol{\Phi}$ keeps sparse signals separated

$$
\left\|\boldsymbol{\Phi}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)\right\|_{2}^{2} \approx\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2}
$$

for all S-sparse $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$

When can we stably recover an S-sparse vector?

- Now we have an underdetermined $M \times N$ system $\boldsymbol{\Phi}$ (FEWER measurements than unknowns), and observe

$$
\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}_{0}+\text { noise }
$$

- We can recover \boldsymbol{x}_{0} when $\boldsymbol{\Phi}$ keeps sparse signals separated

$$
\left\|\boldsymbol{\Phi}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)\right\|_{2}^{2} \approx\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2}
$$

for all S-sparse $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$

- To recover \boldsymbol{x}_{0}, we might solve

$$
\min _{\boldsymbol{x}} \# \text { NonZeroTerms }(\boldsymbol{x}) \text { subject to } \boldsymbol{\Phi} \boldsymbol{x} \approx \boldsymbol{y}
$$

- This program is computationally intractable

When can we stably recover an S-sparse vector?

- Now we have an underdetermined $M \times N$ system $\boldsymbol{\Phi}$ (FEWER measurements than unknowns), and observe

$$
\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}_{0}+\text { noise }
$$

- We can recover \boldsymbol{x}_{0} when $\boldsymbol{\Phi}$ keeps sparse signals separated

$$
\left\|\boldsymbol{\Phi}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)\right\|_{2}^{2} \approx\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2}
$$

for all S-sparse $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$

- A relaxed (convex) program

$$
\min _{\boldsymbol{x}}\|\boldsymbol{x}\|_{1} \text { subject to } \boldsymbol{\Phi} \boldsymbol{x} \approx \boldsymbol{y}
$$

$$
\|\boldsymbol{x}\|_{1}=\sum_{k}\left|x_{k}\right|
$$

- This program is very tractable (linear program)
- The convex program can recover nearly all "identifiable" sparse vectors, and it is robust.

Intuition for ℓ_{1}

$\min _{\boldsymbol{x}}\|\boldsymbol{x}\|_{2}$ s.t. $\boldsymbol{\Phi} \boldsymbol{x}=\boldsymbol{y}$

$\min _{x}\|\boldsymbol{x}\|_{1} \quad$ s.t. $\quad \boldsymbol{\Phi} \boldsymbol{x}=\boldsymbol{y}$

$\left\{x^{\prime}: y=\Phi x^{\prime}\right\}$

What kind of matrices keep sparse signals separated?

total resolution/bandwidth $=\mathrm{N}$

- Random matrices are provably efficient
- We can recover S-sparse \boldsymbol{x} from

$$
M \gtrsim S \cdot \log (N / S)
$$

measurements

Agenda

We will prove (almost from top to bottom) two things:

- That an $M \times N$ iid Gaussian random matrix satisfies

$$
\begin{equation*}
(1-\delta)\|\boldsymbol{x}\|_{2}^{2} \leq\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2} \leq(1+\delta)\|\boldsymbol{x}\|_{2}^{2} \quad \forall 2 S \text {-sparse } \boldsymbol{x} \tag{1}
\end{equation*}
$$

with (extraordinarily) high probability when

$$
M \geq \text { Const } \cdot S \log (N / S)
$$

Agenda

We will prove (almost from top to bottom) two things:

- That an $M \times N$ iid Gaussian random matrix satisfies

$$
\begin{equation*}
(1-\delta)\|\boldsymbol{x}\|_{2}^{2} \leq\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2} \leq(1+\delta)\|\boldsymbol{x}\|_{2}^{2} \quad \forall 2 S \text {-sparse } \boldsymbol{x} \tag{1}
\end{equation*}
$$

with (extraordinarily) high probability when

$$
M \geq \text { Const } \cdot S \log (N / S)
$$

- Suppose an $M \times N$ matrix $\boldsymbol{\Phi}$ obeys (1). Let \boldsymbol{x}_{0} be an S-sparse vector, and suppose we observe $\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}_{0}$. Given \boldsymbol{y}, the solution to

$$
\min _{\boldsymbol{x}}\|\boldsymbol{x}\|_{\ell_{1}} \quad \text { subject to } \quad \boldsymbol{\Phi} \boldsymbol{x}=\boldsymbol{y}
$$

is exactly \boldsymbol{x}_{0}.

Restricted Isometries for Gaussian Matrices

Gaussian random matrices

- Each entry of $\boldsymbol{\Phi}$ is iid $\operatorname{Normal}\left(0, M^{-1}\right)$

- For any fixed $\boldsymbol{x} \in \mathbb{R}^{N}$, each measurement is

$$
y_{m} \sim \operatorname{Normal}\left(0,\|\boldsymbol{x}\|_{2}^{2} / M\right)
$$

Gaussian random matrices

- Each entry of $\boldsymbol{\Phi}$ is iid $\operatorname{Normal}\left(0, M^{-1}\right)$

- For any fixed $\boldsymbol{x} \in \mathbb{R}^{N}$, we have

$$
\mathrm{E}\left[\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}\right]=\|\boldsymbol{x}\|_{2}^{2}
$$

the mean of the measurement energy is exactly $\|\boldsymbol{x}\|_{2}^{2}$

Gaussian random matrices

- Each entry of $\boldsymbol{\Phi}$ is iid $\operatorname{Normal}\left(0, M^{-1}\right)$

- For any fixed $\boldsymbol{x} \in \mathbb{R}^{N}$, we have

$$
\mathrm{P}\left(\left|\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right|<\delta\|\boldsymbol{x}\|_{2}^{2}\right) \geq 1-2 e^{-M \delta^{2} / 8}
$$

Gaussian random matrices

- Each entry of $\boldsymbol{\Phi}$ is iid $\operatorname{Normal}\left(0, M^{-1}\right)$

- For all $2 S$-sparse $\boldsymbol{x} \in \mathbb{R}^{N}$, we have

$$
\mathrm{P}\left(\max _{\boldsymbol{x}}\left|\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right|<\delta\|\boldsymbol{x}\|_{2}^{2}\right) \geq 1-2 e^{c_{1} S \log (N / S)} e^{-c_{2} M \delta^{2}}
$$

So we can make this probability close to 1 by taking

$$
M \geq \text { Const } \cdot S \log (N / S)
$$

Random projection of a fixed vector

For Gaussian random $\boldsymbol{\Phi}$ operating on a fixed $\boldsymbol{x} \in \mathbb{R}^{N}$

$$
\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2} \approx\|\boldsymbol{x}\|_{2}^{2}
$$

Theorem: Let $\boldsymbol{\Phi}$ be an $M \times N$ matrix whose entries are iid Gaussian

$$
\Phi_{i, j} \sim \operatorname{Normal}(0,1 / M)
$$

Then

$$
\mathrm{E}\|\Phi \boldsymbol{x}\|_{2}^{2}=\|\boldsymbol{x}\|_{2}^{2}
$$

as, with $\boldsymbol{v}=\boldsymbol{\Phi} \boldsymbol{x}$,

$$
\mathrm{E}\left[\sum_{m=1}^{M} v_{m}^{2}\right]=\sum_{m=1}^{M} \mathrm{E}\left[v_{m}^{2}\right]=\sum_{m=1}^{M} \frac{1}{M}\|\boldsymbol{x}\|_{2}^{2}=\|\boldsymbol{x}\|_{2}^{2}
$$

since $v_{m}=\left\langle\boldsymbol{x}, \boldsymbol{\phi}_{m}\right\rangle \sim \operatorname{Normal}\left(0, M^{-1}\|\boldsymbol{x}\|_{2}^{2}\right)$

Random projection of a fixed vector

For Gaussian random $\boldsymbol{\Phi}$ operating on a fixed $\boldsymbol{x} \in \mathbb{R}^{N}$

$$
\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2} \approx\|\boldsymbol{x}\|_{2}^{2}
$$

Theorem: Let $\boldsymbol{\Phi}$ be an $M \times N$ matrix whose entries are iid Gaussian

$$
\Phi_{i, j} \sim \operatorname{Normal}(0,1 / M)
$$

Then

$$
\mathrm{E}\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}=\|\boldsymbol{x}\|_{2}^{2}
$$

and for any $0<\delta \leq 1$

$$
\begin{aligned}
\mathrm{P}\left(\mid\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2} \|>\delta\right) & \leq 2 \exp \left(-\frac{\left(\delta^{2}-\delta^{3}\right) M}{4}\right) \\
& \leq 2 \exp \left(-\delta^{2} M / 8\right)
\end{aligned}
$$

for $\delta \leq 1 / 2$.

The Markov inequality

Let Y be a positive random variable. Then for all $t>0$

$$
\mathrm{P}(Y \geq t) \leq \frac{\mathrm{E}[Y]}{t}
$$

The Markov inequality

Let Y be a positive random variable. Then for all $t>0$

$$
\mathrm{P}(Y \geq t) \leq \frac{\mathrm{E}[Y]}{t}
$$

Proof:

$$
\begin{aligned}
\mathrm{E}[Y] & =\int_{0}^{\infty} y f_{Y}(y) d y \\
& \geq \int_{t}^{\infty} y f_{Y}(y) d y \\
& \geq t \int_{t}^{\infty} f_{Y}(y) d y \\
& =t \mathrm{P}(Y \geq t)
\end{aligned}
$$

The Markov inequality

Let Y be a positive random variable. Then for all $t>0$

$$
\mathrm{P}(Y \geq t) \leq \frac{\mathrm{E}[Y]}{t}
$$

Also:

$$
\begin{aligned}
\mathrm{P}\left(Y^{2} \geq t^{2}\right) & \leq \frac{\mathrm{E}\left[Y^{2}\right]}{t^{2}} \\
\mathrm{P}\left(Y^{3} \geq t^{3}\right) & \leq \frac{\mathrm{E}\left[Y^{3}\right]}{t^{3}} \\
\mathrm{P}\left(e^{\lambda Y} \geq e^{\lambda t}\right) & \leq \frac{\mathrm{E}\left[e^{\lambda Y}\right]}{e^{\lambda t}} \quad \lambda>0 \\
& \\
\mathrm{P}(\phi(Y) \geq \phi(t)) & \leq \frac{\mathrm{E}[\phi(Y)]}{\phi(t)}
\end{aligned}
$$

for any strictly monotonic $\phi(\cdot)$.

The Markov inequality

Let Y be a positive random variable. Then for all $t>0$

$$
\mathrm{P}(Y \geq t) \leq \frac{\mathrm{E}[Y]}{t}
$$

Chernoff-type bound:

$$
\mathrm{P}(Y \geq t) \leq \frac{\mathrm{E}\left[e^{\lambda Y}\right]}{e^{\lambda t}} \quad \text { for any } \lambda>0
$$

A first upper concentration bound ...

For $\boldsymbol{v}=\boldsymbol{\Phi} \boldsymbol{x},\|\boldsymbol{x}\|_{2}=1$, we have that

$$
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) \leq \frac{\mathrm{E}\left[e^{\left.\lambda\|\boldsymbol{v}\|_{2}^{2}\right]}\right.}{e^{\lambda(1+\delta)}}
$$

A first upper concentration bound ...

For $\boldsymbol{v}=\boldsymbol{\Phi} \boldsymbol{x},\|\boldsymbol{x}\|_{2}=1$, we have that

$$
\begin{aligned}
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) & \leq \frac{\mathrm{E}\left[e^{\lambda\|\boldsymbol{v}\|_{2}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda \sum_{m} v_{m}^{2}}\right]}{e^{\lambda(1+\delta)}}
\end{aligned}
$$

A first upper concentration bound ...

For $\boldsymbol{v}=\boldsymbol{\Phi} \boldsymbol{x},\|\boldsymbol{x}\|_{2}=1$, we have that

$$
\begin{aligned}
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) & \leq \frac{\mathrm{E}\left[e^{\lambda\|\boldsymbol{v}\|_{2}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda \sum_{m} v_{m}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda v_{1}^{2}} e^{\lambda v_{2}^{2}} \cdots e^{\lambda v_{M}^{2}}\right]}{e^{\lambda(1+\delta)}}
\end{aligned}
$$

A first upper concentration bound ...

For $\boldsymbol{v}=\boldsymbol{\Phi} \boldsymbol{x},\|\boldsymbol{x}\|_{2}=1$, we have that

$$
\begin{aligned}
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) & \leq \frac{\mathrm{E}\left[e^{\lambda\|\boldsymbol{v}\|_{2}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda \sum_{m} v_{m}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda v_{1}^{2}} e^{\lambda v_{2}^{2}} \cdots e^{\lambda v_{M}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right] \mathrm{E}\left[e^{\lambda v_{2}^{2}}\right] \cdots \mathrm{E}\left[e^{\lambda v_{M}^{2}}\right]}{e^{\lambda(1+\delta)}}
\end{aligned}
$$

A first upper concentration bound ...

For $\boldsymbol{v}=\boldsymbol{\Phi} \boldsymbol{x},\|\boldsymbol{x}\|_{2}=1$, we have that

$$
\begin{aligned}
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) & \leq \frac{\mathrm{E}\left[e^{\lambda\|\boldsymbol{v}\|_{2}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda \sum_{m} v_{m}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda v_{1}^{2}} e^{\lambda v_{2}^{2}} \cdots e^{\lambda v_{M}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right] \mathrm{E}\left[e^{\lambda v_{2}^{2}}\right] \cdots \mathrm{E}\left[e^{\lambda v_{M}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\left(\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right]\right)^{M}}{e^{\lambda(1+\delta)}} \quad \text { (since } v_{m} \text { i.i.d.) }
\end{aligned}
$$

A first upper concentration bound ...

For $\boldsymbol{v}=\boldsymbol{\Phi} \boldsymbol{x},\|\boldsymbol{x}\|_{2}=1$, we have that

$$
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) \leq \frac{\left(\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right]\right)^{M}}{e^{\lambda(1+\delta)}}, \quad v_{1} \sim \operatorname{Normal}\left(0, M^{-1}\right)
$$

A first upper concentration bound ...

For $\boldsymbol{v}=\boldsymbol{\Phi} \boldsymbol{x},\|\boldsymbol{x}\|_{2}=1$, we have that

$$
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) \leq \frac{\left(\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right]\right)^{M}}{e^{\lambda(1+\delta)}}, \quad v_{1} \sim \operatorname{Normal}\left(0, M^{-1}\right)
$$

It is known that

$$
\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right]=\frac{1}{\sqrt{1-2 \lambda / M}} \quad \text { for } \lambda<M / 2
$$

A first upper concentration bound ...

For $\boldsymbol{v}=\boldsymbol{\Phi} \boldsymbol{x},\|\boldsymbol{x}\|_{2}=1$, we have that

$$
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) \leq \frac{\left(\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right]\right)^{M}}{e^{\lambda(1+\delta)}}, \quad v_{1} \sim \operatorname{Normal}\left(0, M^{-1}\right)
$$

And so

$$
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) \leq\left(\frac{e^{-2 \lambda(1+\delta) / M}}{1-2 \lambda / M}\right)^{M / 2} \quad \forall \lambda<M / 2
$$

A first upper concentration bound ...

We have

$$
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) \leq\left(\frac{e^{-2 \lambda(1+\delta) / M}}{1-2 \lambda / M}\right)^{M / 2} \quad \forall \lambda<M / 2
$$

Choose

$$
\lambda=\frac{M \delta}{2(1+\delta)}
$$

(easy to see that in this case $\lambda<M / 2$).

A first upper concentration bound ...

We have

$$
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) \leq\left(\frac{e^{-2 \lambda(1+\delta) / M}}{1-2 \lambda / M}\right)^{M / 2} \quad \forall \lambda<M / 2
$$

Choose

$$
\lambda=\frac{M \delta}{2(1+\delta)}
$$

(easy to see that in this case $\lambda<M / 2$).
And so

$$
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) \leq\left((1+\delta) e^{-\delta}\right)^{M / 2}
$$

The upper concentration bound

We have

$$
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) \leq\left((1+\delta) e^{-\delta}\right)^{M / 2}
$$

blue: $1+\delta$, red: $e^{\delta-\left(\delta^{2}-\delta^{3}\right) / 2}$

The upper concentration bound

We have

$$
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) \leq\left((1+\delta) e^{-\delta}\right)^{M / 2}
$$

and so

$$
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}>1+\delta\right) \leq e^{-\left(\delta^{2}-\delta^{3}\right) M / 4}
$$

The lower concentration bound

The lower bound follows the exact same sequence of steps:

$$
\begin{aligned}
\mathrm{P}\left(\|\boldsymbol{v}\|_{2}^{2}<1-\delta\right) & \leq\left(\frac{e^{2(1-\delta) \lambda / M}}{1+2 \lambda / M}\right)^{M / 2} \\
& \leq\left((1-\delta) e^{\delta}\right)^{M / 2} \quad \text { by taking } \lambda=\frac{M \delta}{2(1-\delta)} \\
& \leq e^{-\left(\delta^{2}-\delta^{3}\right) M / 4}
\end{aligned}
$$

The Johnson-Lindenstrauss Lemma

We have shown that for any fixed $\boldsymbol{x} \in \mathbb{R}^{N}$

$$
(1-\delta)\|\boldsymbol{x}\|_{2}^{2} \leq\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2} \leq(1+\delta)\|\boldsymbol{x}\|_{2}^{2}
$$

with probability exceeding $1-2 e^{-\delta^{2} M / 8}$.
A simple application of the union bound means that for any set of K vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{K}$, the above holds with probability exceeding $1-2 K e^{-\delta^{2} M / 8} \ldots$

The Johnson-Lindenstrauss Lemma

Theorem: (J\&L, 1984): Let \mathcal{Q} be a arbitrary set of Q vectors in \mathbb{R}^{N}, and let $\boldsymbol{\Phi}$ be an $M \times N$ random linear mapping. Then

$$
(1-\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2} \leq\left\|\Phi\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right)\right\|_{2}^{2} \leq(1+\delta)\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}^{2}
$$

for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{Q}$ with

$$
\mathrm{P}(\text { Failure }) \leq Q^{2} e^{-\delta^{2} M / 8} \leq \epsilon
$$

when

$$
M \geq \frac{8}{\delta^{2}}\left[\log (Q)+\log \left(\frac{1}{\epsilon}\right)+0.7\right]
$$

The Johnson-Lindenstrauss Lemma

$\boldsymbol{\Phi}$ embeds to precision δ with probability ϵ when

$$
M \geq \frac{8}{\delta^{2}}\left[2 \log (Q)+\log \left(\frac{1}{\epsilon}\right)+0.7\right]
$$

Concentration bound

We have: For any fixed $\boldsymbol{x} \in \mathbb{R}^{N}$

$$
(1-\delta)\|\boldsymbol{x}\|_{2}^{2} \leq\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2} \leq(1+\delta)\|\boldsymbol{x}\|_{2}^{2}
$$

with probability exceeding $1-2 e^{-\delta^{2} M / 8}$.
We want: this for all $2 S$-sparse \boldsymbol{x} simultaneously...

A single $2 S$-dimensional subspace

Theorem: Let V be a $2 S$-dimensional subspace of \mathbb{R}^{N}. Then

$$
\mathrm{P}\left(\sup _{\boldsymbol{x} \in V}\left|\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right|>\delta\right) \leq 2 \cdot 9^{2 S} \cdot e^{-\delta^{2} M / 32}
$$

As before, it is enough to prove this for

$$
\boldsymbol{x} \in B_{V}=\left\{\boldsymbol{x} \in V:\|\boldsymbol{x}\|_{2}=1\right\}
$$

Covering the sphere

An ϵ-net for B_{V} :

for every $\boldsymbol{x} \in B_{V}$, there is a $\boldsymbol{y} \in$ Net such that $\|\boldsymbol{x}-\boldsymbol{y}\|_{2} \leq \epsilon$
$N\left(B_{V}, \epsilon\right)$ is the size of the smallest ϵ-net

Covering the sphere

It is a fact that

$$
N\left(B_{V}, \epsilon\right) \leq\left(1+\frac{2}{\epsilon}\right)^{2 S}
$$

From discrete to continuous

Lemma: Fix $0 \leq \epsilon<1 / 2$, and let \mathcal{N}_{ϵ} be the minimal ϵ-net for B_{V}. Then

$$
\sup _{\boldsymbol{x} \in B_{V}}\left|\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right| \leq \frac{1}{1-2 \epsilon} \max _{\boldsymbol{y} \in \mathcal{N}_{\epsilon}}\left|\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right|
$$

A single $2 S$-dimensional subspace

Theorem: Let V be a $2 S$-dimensional subspace of \mathbb{R}^{N}. Then

$$
\mathrm{P}\left(\sup _{\boldsymbol{x} \in V}\left|\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right|>\delta\right) \leq 2 \cdot 9^{2 S} \cdot e^{-\delta^{2} M / 32}
$$

where the constant $1 / 32=1 / 4 \cdot 1 / 8(1 / 8$ is from the previous theorem $)$.

A single $2 S$-dimensional subspace

Theorem: Let V be a $2 S$-dimensional subspace of \mathbb{R}^{N}. Then

$$
\mathrm{P}\left(\sup _{\boldsymbol{x} \in V}\left|\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right|>\delta\right) \leq 2 \cdot 9^{2 S} \cdot e^{-\delta^{2} M / 32}
$$

where the constant $1 / 32=1 / 4 \cdot 1 / 8(1 / 8$ is from the previous theorem $)$.

So $\boldsymbol{\Phi}$ is "well-conditioned" on V when

$$
M \geq \text { Const } \cdot S
$$

A single $2 S$-dimensional subspace

Theorem: Let V be a $2 S$-dimensional subspace of \mathbb{R}^{N}. Then

$$
\mathrm{P}\left(\sup _{\boldsymbol{x} \in V}\left|\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right|>\delta\right) \leq 2 \cdot 9^{2 S} \cdot e^{-\delta^{2} M / 32}
$$

where the constant $1 / 32=1 / 4 \cdot 1 / 8(1 / 8$ is from the previous theorem $)$.
We want this for all subspaces in which $2 S$-sparse signals live...

A single $2 S$-dimensional subspace

Theorem: Let V be a $2 S$-dimensional subspace of \mathbb{R}^{N}. Then

$$
\mathrm{P}\left(\sup _{\boldsymbol{x} \in V}\left|\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right|>\delta\right) \leq 2 \cdot 9^{2 S} \cdot e^{-\delta^{2} M / 32}
$$

where the constant $1 / 32=1 / 4 \cdot 1 / 8(1 / 8$ is from the previous theorem $)$.
We want this for all subspaces in which $2 S$-sparse signals live...
There are $\binom{N}{2 S} \leq\left(\frac{N e}{2 S}\right)^{2 S}$ such subspaces...

All $2 S$-dimensional subspaces

For $\Gamma \subset\{1, \ldots, N\}$, let

$$
B_{\Gamma}=\left\{\boldsymbol{x} \in \mathbb{R}^{N}: x_{\gamma}=0, \gamma \notin \Gamma,\|\boldsymbol{x}\|_{2}=1\right\} .
$$

Theorem:

$$
\mathrm{P}\left(\max _{|\Gamma| \leq 2 S} \sup _{\boldsymbol{x} \in B_{\Gamma}}\left|\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right|>\delta\right) \leq 2\left(\frac{N e}{2 S}\right)^{2 S} 9^{2 S} e^{-\delta^{2} M / 32}
$$

All $2 S$-dimensional subspaces

Theorem:

$$
\begin{aligned}
\mathrm{P}\left(\sup _{\text {all } 2 S \text { sparse } \boldsymbol{x}}\left|\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2}-\|\boldsymbol{x}\|_{2}^{2}\right|>\delta\right) & \leq 2\left(\frac{N e}{2 S}\right)^{2 S} 9^{2 S} e^{-\delta^{2} M / 32} \\
& =e^{\log 2+2 S \log (N e / 2 S)+2 S \log 9-\delta^{2} M / 32}
\end{aligned}
$$

Which is to say

$$
(1-\delta)\|\boldsymbol{x}\|_{2}^{2} \leq\|\boldsymbol{\Phi} \boldsymbol{x}\|_{2}^{2} \leq(1+\delta)\|\boldsymbol{x}\|_{2}^{2} \quad \forall 2 S \text {-sparse } \boldsymbol{x}
$$

with high probability when

$$
M \geq \frac{\mathrm{Const}}{\delta^{2}} \cdot S \log (N / S)
$$

Sparse Recovery using ℓ_{1} minimization

Sparse recovery

We will show the following:

Let $\boldsymbol{\Phi}$ be an $M \times N$ matrix that is an approximate isometry for $3 S$-sparse vectors. Let \boldsymbol{x}_{0} be an S-sparse vector, and suppose we observe $\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}_{0}$. Given \boldsymbol{y}, the solution to

$$
\min _{\boldsymbol{x}}\|\boldsymbol{x}\|_{1} \quad \text { subject to } \quad \boldsymbol{\Phi} \boldsymbol{x}=\boldsymbol{y}
$$

is exactly \boldsymbol{x}_{0}.

Moving to the solution

$$
\min _{\boldsymbol{x}}\|\boldsymbol{x}\|_{1} \text { such that } \boldsymbol{\Phi} \boldsymbol{x}=\boldsymbol{y}
$$

Call the solution to this \boldsymbol{x}^{\sharp}. Set

$$
\boldsymbol{h}=\boldsymbol{x}^{\sharp}-\boldsymbol{x}_{0} .
$$

Moving to the solution

$$
\min _{\boldsymbol{x}}\|\boldsymbol{x}\|_{1} \text { such that } \boldsymbol{\Phi} \boldsymbol{x}=\boldsymbol{y}
$$

Call the solution to this \boldsymbol{x}^{\sharp}. Set

$$
\boldsymbol{h}=\boldsymbol{x}^{\sharp}-\boldsymbol{x}_{0} .
$$

Two things must be true:

- $\mathbf{\Phi} h=\mathbf{0}$

Simply because both \boldsymbol{x}^{\sharp} and \boldsymbol{x}_{0} are feasible: $\boldsymbol{\Phi} \boldsymbol{x}^{\sharp}=\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}_{0}$

- $\left\|\boldsymbol{x}_{0}+\boldsymbol{h}\right\|_{1} \leq\left\|\boldsymbol{x}_{0}\right\|_{1}$

Simply because $\boldsymbol{x}_{0}+\boldsymbol{h}=\boldsymbol{x}^{\sharp}$, and $\left\|\boldsymbol{x}^{\sharp}\right\|_{1} \leq\left\|\boldsymbol{x}_{0}\right\|_{1}$

Moving to the solution

$$
\min _{\boldsymbol{x}}\|\boldsymbol{x}\|_{1} \text { such that } \boldsymbol{\Phi} \boldsymbol{x}=\boldsymbol{y}
$$

Call the solution to this \boldsymbol{x}^{\sharp}. Set

$$
h=x^{\sharp}-x_{0} .
$$

Two things must be true:

- $\boldsymbol{\Phi} h=\mathbf{0}$ Simply because both \boldsymbol{x}^{\sharp} and \boldsymbol{x}_{0} are feasible: $\boldsymbol{\Phi} \boldsymbol{x}^{\sharp}=\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}_{0}$
- $\left\|\boldsymbol{x}_{0}+\boldsymbol{h}\right\|_{1} \leq\left\|\boldsymbol{x}_{0}\right\|_{1}$ Simply because $\boldsymbol{x}_{0}+\boldsymbol{h}=\boldsymbol{x}^{\sharp}$, and $\left\|\boldsymbol{x}^{\sharp}\right\|_{1} \leq\left\|\boldsymbol{x}_{0}\right\|_{1}$

We'll show that if $\mathbf{\Phi}$ is $3 S$-RIP, then these conditions are incompatible unless $\boldsymbol{h}=\mathbf{0}$

Geometry

SUCCESS

FAILURE

Two things must be true:

- $\boldsymbol{\Phi} h=\mathbf{0}$
- $\left\|\boldsymbol{x}_{0}+\boldsymbol{h}\right\|_{1} \leq\left\|\boldsymbol{x}_{0}\right\|_{1}$

Cone condition

For $\Gamma \subset\{1, \ldots, N\}$, define $\boldsymbol{h}_{\Gamma} \in \mathbb{R}^{N}$ as

$$
h_{\Gamma}(\gamma)= \begin{cases}h(\gamma) & \gamma \in \Gamma \\ 0 & \gamma \notin \Gamma\end{cases}
$$

Let Γ_{0} be the support of \boldsymbol{x}_{0}. For any "descent vector" \boldsymbol{h}, we have

$$
\left\|\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1} \leq\left\|\boldsymbol{h}_{\Gamma_{0}}\right\|_{1}
$$

Cone condition

For $\Gamma \subset\{1, \ldots, N\}$, define $\boldsymbol{h}_{\Gamma} \in \mathbb{R}^{N}$ as

$$
h_{\Gamma}(\gamma)= \begin{cases}h(\gamma) & \gamma \in \Gamma \\ 0 & \gamma \notin \Gamma\end{cases}
$$

Let Γ_{0} be the support of \boldsymbol{x}_{0}. For any "descent vector" \boldsymbol{h}, we have

$$
\left\|\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1} \leq\left\|\boldsymbol{h}_{\Gamma_{0}}\right\|_{1}
$$

Why? The triangle inequality..

$$
\begin{aligned}
\left\|\boldsymbol{x}_{0}\right\|_{1} \geq\left\|\boldsymbol{x}_{0}+\boldsymbol{h}\right\|_{1} & =\left\|\boldsymbol{x}_{0}+\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1} \\
& \geq\left\|\boldsymbol{x}_{0}+\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1}-\left\|\boldsymbol{h}_{\Gamma_{0}}\right\|_{1} \\
& =\left\|\boldsymbol{x}_{0}\right\|_{1}+\left\|\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1}-\left\|\boldsymbol{h}_{\Gamma_{0}}\right\|_{1}
\end{aligned}
$$

Cone condition

For $\Gamma \subset\{1, \ldots, N\}$, define $\boldsymbol{h}_{\Gamma} \in \mathbb{R}^{N}$ as

$$
h_{\Gamma}(\gamma)= \begin{cases}h(\gamma) & \gamma \in \Gamma \\ 0 & \gamma \notin \Gamma\end{cases}
$$

Let Γ_{0} be the support of \boldsymbol{x}_{0}. For any "descent vector" \boldsymbol{h}, we have

$$
\left\|\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1} \leq\left\|\boldsymbol{h}_{\Gamma_{0}}\right\|_{1}
$$

We will show that if $\mathbf{\Phi}$ is $3 S$-RIP, then

$$
\mathbf{\Phi} \boldsymbol{h}=\mathbf{0} \quad \Rightarrow \quad\left\|\boldsymbol{h}_{\Gamma_{0}}\right\|_{1} \leq \rho\left\|\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1}
$$

for some $\rho<1$, and so $\boldsymbol{h}=\mathbf{0}$.

Some basic facts about ℓ_{p} norms

- $\left\|\boldsymbol{h}_{\Gamma}\right\|_{\infty} \leq\left\|\boldsymbol{h}_{\Gamma}\right\|_{2} \leq\left\|\boldsymbol{h}_{\Gamma}\right\|_{1}$
- $\left\|\boldsymbol{h}_{\Gamma}\right\|_{1} \leq \sqrt{|\Gamma|} \cdot\left\|\boldsymbol{h}_{\Gamma}\right\|_{2}$
- $\left\|\boldsymbol{h}_{\Gamma}\right\|_{2} \leq \sqrt{|\Gamma|} \cdot\left\|\boldsymbol{h}_{\Gamma}\right\|_{\infty}$

Dividing up $\boldsymbol{h}_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of \boldsymbol{x}_{0}

Fix $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{\Phi})$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$,

Dividing up $\boldsymbol{h}_{\Gamma_{0}^{c}}$

Recall that Γ_{0} is the support of x_{0}

Fix $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{\Phi})$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$,

Then

$$
0=\|\boldsymbol{\Phi} \boldsymbol{h}\|_{2}=\left\|\boldsymbol{\Phi}\left(\sum_{j \geq 1} \boldsymbol{h}_{\Gamma_{j}}\right)\right\|_{2} \geq\left\|\boldsymbol{\Phi}\left(\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{1}}\right)\right\|_{2}-\left\|\sum_{j \geq 2} \boldsymbol{\Phi} \boldsymbol{h}_{\Gamma_{j}}\right\|_{2}
$$

Dividing up $\boldsymbol{h}_{\Gamma_{0}^{c}}$

Recall that Γ_{0} is the support of x_{0}

Fix $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{\Phi})$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$,

Then

$$
\begin{aligned}
0=\|\boldsymbol{\Phi} \boldsymbol{h}\|_{2}=\left\|\boldsymbol{\Phi}\left(\sum_{j \geq 1} \boldsymbol{h}_{\Gamma_{j}}\right)\right\|_{2} & \geq\left\|\boldsymbol{\Phi}\left(\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{1}}\right)\right\|_{2}-\left\|\sum_{j \geq 2} \boldsymbol{\Phi} \boldsymbol{h}_{\Gamma_{j}}\right\|_{2} \\
& \geq\left\|\boldsymbol{\Phi}\left(\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{1}}\right)\right\|_{2}-\sum_{j \geq 2}\left\|\boldsymbol{\Phi} \boldsymbol{h}_{\Gamma_{j}}\right\|_{2}
\end{aligned}
$$

Dividing up $\boldsymbol{h}_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of \boldsymbol{x}_{0}

Fix $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{\Phi})$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$
$\Gamma_{2}=$ locations next $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$

Then

$$
\left\|\boldsymbol{\Phi}\left(\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{1}}\right)\right\|_{2} \leq \sum_{j \geq 2}\left\|\boldsymbol{\Phi} \boldsymbol{h}_{\Gamma_{j}}\right\|_{2}
$$

Dividing up $\boldsymbol{h}_{\Gamma_{0}^{c}}$

Recall that Γ_{0} is the support of \boldsymbol{x}_{0}
Fix $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{\Phi})$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$
$\Gamma_{2}=$ locations next $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$

Applying the $3 S$-RIP gives

$$
\begin{aligned}
\sqrt{1-\delta_{3 S}}\left\|\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{1}}\right\|_{2} & \leq\left\|\boldsymbol{\Phi}\left(\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{1}}\right)\right\|_{2} \\
& \leq \sum_{j \geq 2}\left\|\boldsymbol{\Phi} \boldsymbol{h}_{\Gamma_{j}}\right\|_{2} \leq \sum_{j \geq 2} \sqrt{1+\delta_{2 S}}\left\|\boldsymbol{h}_{\Gamma_{j}}\right\|_{2}
\end{aligned}
$$

Dividing up $\boldsymbol{h}_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of \boldsymbol{x}_{0}

Fix $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{\Phi})$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$,

Applying the $3 S$-RIP gives

$$
\left\|\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{1}}\right\|_{2} \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \sum_{j \geq 2}\left\|\boldsymbol{h}_{\Gamma_{j}}\right\|_{2}
$$

Dividing up $\boldsymbol{h}_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of \boldsymbol{x}_{0}

Fix $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{\Phi})$. Let

$$
\begin{aligned}
& \Gamma_{1}=\text { locations of } 2 S \text { largest terms in } \boldsymbol{h}_{\Gamma_{0}^{c}}, \\
& \Gamma_{2}=\text { locations next } 2 S \text { largest terms in } \boldsymbol{h}_{\Gamma_{0}^{c}}
\end{aligned}
$$

Then

$$
\left\|\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{1}}\right\|_{2} \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \sum_{j \geq 2} \sqrt{2 S}\left\|\boldsymbol{h}_{\Gamma_{j}}\right\|_{\infty}
$$

since $\left\|\boldsymbol{h}_{\Gamma_{j}}\right\|_{2} \leq \sqrt{2 S}\left\|\boldsymbol{h}_{\Gamma_{j}}\right\|_{\infty}$

Dividing up $\boldsymbol{h}_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of \boldsymbol{x}_{0}

Fix $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{\Phi})$. Let

$$
\Gamma_{1}=\text { locations of } 2 S \text { largest terms in } \boldsymbol{h}_{\Gamma_{0}^{c}},
$$

$\Gamma_{2}=$ locations next $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$,

Then

$$
\left\|\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{1}}\right\|_{2} \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \sum_{j \geq 1} \frac{1}{\sqrt{2 S}}\left\|\boldsymbol{h}_{\Gamma_{j}}\right\|_{1}
$$

since $\left\|\boldsymbol{h}_{\Gamma_{j}}\right\|_{\infty} \leq \frac{1}{2 S}\left\|\boldsymbol{h}_{\Gamma_{j-1}}\right\|_{1}$

Dividing up $\boldsymbol{h}_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of x_{0}

Fix $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{\Phi})$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$,

Which means

$$
\left\|\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{1}}\right\|_{2} \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \frac{\left\|\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1}}{\sqrt{2 S}}
$$

Dividing up $\boldsymbol{h}_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of \boldsymbol{x}_{0}

Fix $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{\Phi})$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$
$\Gamma_{2}=$ locations next $2 S$ largest terms in $\boldsymbol{h}_{\Gamma_{0}^{c}}$

Working to the left

$$
\left\|\boldsymbol{h}_{\Gamma_{0}}\right\|_{2} \leq\left\|\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{1}}\right\|_{2} \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \frac{\left\|\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1}}{\sqrt{2 S}}
$$

Dividing up $\boldsymbol{h}_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of x_{0}

Fix $\boldsymbol{h} \in \operatorname{Null}(\boldsymbol{\Phi})$. Let

$$
\begin{aligned}
& \Gamma_{1}=\text { locations of } 2 S \text { largest terms in } \boldsymbol{h}_{\Gamma_{0}^{c}} \\
& \Gamma_{2}=\text { locations next } 2 S \text { largest terms in } \boldsymbol{h}_{\Gamma_{0}^{c}}
\end{aligned}
$$

Working to the left

$$
\frac{\left\|\boldsymbol{h}_{\Gamma_{0}}\right\|_{1}}{\sqrt{S}} \leq\left\|\boldsymbol{h}_{\Gamma_{0}}\right\|_{2} \leq\left\|\boldsymbol{h}_{\Gamma_{0}}+\boldsymbol{h}_{\Gamma_{1}}\right\|_{2} \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \frac{\left\|\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1}}{\sqrt{2 S}}
$$

Wrapping it up

We have shown

$$
\begin{aligned}
\left\|\boldsymbol{h}_{\Gamma_{0}}\right\|_{1} & \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \sqrt{\frac{S}{2 S}}\left\|\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1} \\
& =\rho\left\|\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1}
\end{aligned}
$$

for

$$
\rho=\sqrt{\frac{1+\delta_{2 S}}{2\left(1-\delta_{3 S}\right)}}
$$

Wrapping it up

We have shown

$$
\begin{aligned}
\left\|\boldsymbol{h}_{\Gamma_{0}}\right\|_{1} & \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \sqrt{\frac{S}{2 S}}\left\|\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1} \\
& =\rho\left\|\boldsymbol{h}_{\Gamma_{0}^{c}}\right\|_{1}
\end{aligned}
$$

for

$$
\rho=\sqrt{\frac{1+\delta_{2 S}}{2\left(1-\delta_{3 S}\right)}}
$$

Taking $\delta_{2 S} \leq \delta_{3 S}<1 / 3 \quad \Rightarrow \quad \rho<1$.

SUCCESS!!

Theorem: Let $\mathbf{\Phi}$ be an $M \times N$ matrix that is an approximate isometry for $3 S$-sparse vectors. Let x_{0} be an S-sparse vector, and suppose we observe $\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}_{0}$. Given \boldsymbol{y}, the solution to

$$
\min _{\boldsymbol{x}}\|\boldsymbol{x}\|_{1} \quad \text { subject to } \quad \boldsymbol{\Phi} \boldsymbol{x}=\boldsymbol{y}
$$

is exactly \boldsymbol{x}_{0}.

Other fundamental results

Iterative methods for sparse recovery

There are other iterative methods that have similar recovery guarantees:

- orthogonal matching pursuit
- iterative hard thresholding
(Tropp, Zhang, Foucart, and others)
- "iterative model selection" CoSAMP, etc. (Blumensath, Davies)
(Tropp, Needell, others)

Deterministic matrices

- Coherence bounds: can recover S-sparse vector from

$$
S \lesssim \frac{1}{\mu}, \quad \mu=\max \text { inner product between columns }
$$

Donoho, Huo, Elad, Bruckstein, Nielson, Gribonval, ...

- Connections to channel coding: Specially constructed matrices coupled with specialized "decoding" algorithms can yield similar performance guarantees
(Tarokh and collaborators on low-density frames)
- Other deterministic constructions based on Vandermonde and Fourier matrices yield weaker (but easily verifiable) bonds

Phase transitions for Gaussian $+\ell_{1}$

Donoho and Tanner get sharp results by looking at properties of projected polytopes:

Sharp upper bounds for Gaussian $+\ell_{1}$

Chandrasekaran, Parrilo, Recht, and Wilsky get a sharp upper bound by estimating the Gaussian width of the descent cone

$$
\begin{aligned}
& M \geq \omega(\mathcal{T}(\boldsymbol{x}))^{2}, \quad \mathcal{T}(\boldsymbol{x})=\text { descent cone from } \boldsymbol{x} \\
& \omega(\mathcal{X})=\mathrm{E}\left[\sup _{\boldsymbol{v} \in \mathcal{X} \cap S^{N-1}}\langle\boldsymbol{g}, \boldsymbol{v}\rangle\right], \quad \boldsymbol{g} \sim \operatorname{Normal}(\mathbf{0}, \mathbf{I})
\end{aligned}
$$

For ℓ_{1} problem, \boldsymbol{x}_{0} S-sparse,

$$
\omega\left(\mathcal{T}\left(\boldsymbol{x}_{0}\right)\right)^{2} \leq 2 S \log ((N-S) / S+1)
$$

Applications of random projections: Hyperspectral imaging

256 frequency bands, 10s of megapixels, 30 frames per second ...

Applications of random projections: Coded ADCs

Multichannel ADC/receiver for identifying radar pulses Covers $\sim 3 \mathrm{GHz}$ with $\sim 400 \mathrm{MHz}$ sampling rate

Matrices with structured randomness for sparse recovery

- Subsampled rows of "incoherent" orthogonal matrix

applications: MRI, channel estimation, radar, ...
- Random convolution + subsampling

applications: computed imaging, radar, sonar, ...
- Multi-toeplitz matrices

applications: MIMO channel estimation, fast forward modeling, ...

Compressive sensing with structured randomness

Subsampled rows of "incoherent" orthogonal matrix

Can recover S-sparse \boldsymbol{x}_{0} with

$$
M \gtrsim S \log ^{a} N
$$

measurements

Candes, R, Tao, Rudelson, Vershynin, Tropp, ...

Accelerated MRI

(Lustig et al. '08)

Matrices for sparse recovery with structured randomness

Random convolution + subsampling

Universal; Can recover S-sparse \boldsymbol{x}_{0} with

$$
M \gtrsim S \log ^{a} N
$$

Applications include:

- radar imaging
- sonar imaging
- seismic exploration
- channel estimation for communications
- super-resolved imaging

R, Bajwa, Haupt, Tropp, Rauhut, ...

Matrices for sparse recovery with structured randomness

Multi-toeplitz:

Can recover S-sparse \boldsymbol{x}_{0} with

$$
M \gtrsim S \log ^{a} N
$$

R, Neelamani

Application: simultaneous activation

- Run a single simulation with all of the sources activated simultaneously with random waveforms
- The channel responses interfere with one another, but the randomness "codes" them in such a way that they can be separated later

