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Agenda

Today: Mathematical foundations of compressive sensing
Random embeddings and recovery using ¢

Saturday: Low rank recovery and bilinear problems in signal processing

Sunday: Dynamic recovery, subspace matching and CS on the continuum
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Data
Converter
ADS5485

i3 TExas
INSTRUMENTS




Linear systems of equations are ubiquitous

Data
Converter

ADS5485

I TEXAS
INSTRUMENTS

All of these can be abstracted to

y=Ax



Linear systems of equations are ubiquitous

Model:

y: data coming off of sensor
A: mathematical (linear) model for sensor
x: signal/image to reconstruct



Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe

y = Axg + noise



Classical: When can we stably “invert” a matrix?
@ Suppose we have an M x N observation matrix A with M > N
(MORE observations than unknowns), through which we observe
y = Axg + noise
@ Standard way to recover x, use the pseudo-inverse

solve min ||y — Az|? < &=(ATA) ATy
xr
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Classical: When can we stably “invert” a matrix?

@ Suppose we have an M x N observation matrix A with M > N

(MORE observations than unknowns), through which we observe

y = Axg + noise
@ Standard way to recover x, use the pseudo-inverse
solve min ly — Az|3 < x=(ATA) ATy
@ Q: When is this recovery stable? That is, when is
& — @oll3 ~ Inoisel} 7

@ A: When the matrix A preserves distances ...

|A(x; — w2)||% ~ ||y — :c2||§ for all x1, x5 € RY



Sparsity

wavelet transform zoom



Wavelet approximation

Take 1% of largest coefficients, set the rest to zero (adaptive)

original

approximated

rel. error = 0.031



When can we stably recover an S-sparse vector?

Y= P X,

@ Now we have an underdetermined M x N system ®
(FEWER measurements than unknowns), and observe

y = ®xy + noise



When can we stably recover an S-sparse vector?

@ Now we have an underdetermined M x N system ®
(FEWER measurements than unknowns), and observe

y = ®xy + noise
@ We can recover xg when ® keeps sparse signals separated
2 2
[®(z1 —x2)[l3 = [l1 — 223

for all S-sparse x1, o



When can we stably recover an S-sparse vector?

@ Now we have an underdetermined M x N system ®
(FEWER measurements than unknowns), and observe

y = Pxy + noise
@ We can recover xg when ® keeps sparse signals separated
[®(z1 —22)|5 ~ [lo1 — 223
for all S-sparse x1, x>
@ To recover xg, we might solve

min #NonZeroTerms(x) subjectto Pz ~y
€T

@ This program is computationally intractable



When can we stably recover an S-sparse vector?
@ Now we have an underdetermined M x N system ®
(FEWER measurements than unknowns), and observe
y = Py + noise
@ We can recover g when ® keeps sparse signals separated
2 2
[®(z1 —x2)[l3 = [l&1 — 223
for all S-sparse x1, x2
@ A relaxed (convex) program

min ||x||; subjectto Pxr~x~y
€T
lzlln = >k |2kl

@ This program is very tractable (linear program)
@ The convex program can recover nearly all “identifiable” sparse
vectors, and it is robust.



Intuition for ¢4
ming ||z|z st. Px =1y ming ||z|; st. Px =1y

y RN y RN

A% 3
) x

{1 y=d2'} {2': y= Pz}



What kind of matrices keep sparse signals separated?

Y d
“compressed —
measurements” n 1
[ | |

random 1
entries

active
components

NN EEEEECEEEEEE]

total resolution/bandwidth = N

@ Random matrices are provably efficient
@ We can recover S-sparse « from
M =z S-log(N/S)

measurements



Agenda

We will prove (almost from top to bottom) two things:
@ That an M x N iid Gaussian random matrix satisfies
(L=d)lzl3 < [Pl < (L+0)[]3 V2S-sparsez
with (extraordinarily) high probability when

M > Const - Slog(N/S)



Agenda

We will prove (almost from top to bottom) two things:
@ That an M x N iid Gaussian random matrix satisfies
(L=d)lzl3 < [Pl < (L+0)[]3 V2S-sparsez
with (extraordinarily) high probability when

M > Const - Slog(N/S)

@ Suppose an M x N matrix ® obeys (1). Let &y be an S-sparse
vector, and suppose we observe y = ®xy. Given vy, the solution to

min |x|l,, subjectto Pz =1y
€T

is exactly xg.



Restricted Isometries for Gaussian Matrices



Gaussian random matrices

e Each entry of ® is iid Normal(0, M 1)
Y P

M

“measurements” =a

iid Gaussian random entries

@ For any fixed x € RY, each measurement is

Ym ~ Normal(0, ||z||3/M)




Gaussian random matrices

e Each entry of @ is iid Normal(0, M 1)

Y P

M

“measurements” =

iid Gaussian random entries

IIIIIIIIIIIIIIIII&

e For any fixed x € R, we have
E[l| @3] = [lz[3

the mean of the measurement energy is exactly ||z||3



Gaussian random matrices

e Each entry of ® is iid Normal(0, M 1)
Y P

i |..| <

M

“measurements” =a

iid Gaussian random entries

@ For any fixed x € RY, we have

P (|[|®x)3 - |lz]3| < §|@]|2) > 1—2e M08



Gaussian random matrices

e Each entry of @ is iid Normal(0, M 1)

M

“measurements” =a

iid Gaussian random entries

IIIIIIIIIIIIIIIII&

@ For all 25-sparse x € RY, we have
P (max || @2]3 - [2]3] < ollz]}) > 1 2ec1S1aN/S)emeats?
So we can make this probability close to 1 by taking
M > Const - S log(N/S)



Random projection of a fixed vector

For Gaussian random @ operating on a fixed & € RV

@3 ~ [l

Theorem: Let @ be an M x N matrix whose entries are iid Gaussian
®; j ~ Normal(0,1/M).

Then
E |0z = [|l=|3,

as, with v = &z,

M M M 1
EY on| =) Elpl=> Mllwllg = ||z3,
m=1 m=1 m=1

since vy, = (x, @,,) ~ Normal(0, M ~!||z|3)



Random projection of a fixed vector
For Gaussian random ® operating on a fixed € R

@3 ~ [l

Theorem: Let @ be an M x N matrix whose entries are iid Gaussian
®; j ~ Normal(0,1/M).

Then
E|®z|3 = [=]53,

and forany 0 < § <1

4
< 2exp (—52M/8)

2 _ 53
P (|| @[3 — [|=l3]| > 6) < 2exp <_<55>M>

for 0 <1/2.



The Markov inequality

Let Y be a positive random variable. Then for all ¢ > 0

P(Y>t) < E[ty]



The Markov inequality

Let Y be a positive random variable. Then for all ¢t > 0

E[Y]

P(Y>1) < =

Proof:
E[Y] = /Oooyfy(y) dy
> /t y fy(y) dy

o0

>t t fy(y) dy



The Markov inequality

Let Y be a positive random variable. Then for all ¢ > 0

perzg < B

Also:

A>0

for any strictly monotonic ¢(-).



The Markov inequality

Let Y be a positive random variable. Then for all ¢ > 0

perzg < B

Chernoff-type bound:

E [e)\Y]
Y

PY>t) < for any A > 0.



A first upper concentration bound ...

For v = ®x, ||z|2 = 1, we have that

E[eMvI]

2



A first upper concentration bound ...

For v = ®x, ||x|]2 = 1, we have that

B[]

P (llvllz > 1+6) < =S5

B Ele* Zm vfn]
)



A first upper concentration bound ...

For v = ®x, ||z||2 = 1, we have that

B[]
2
Ele? Xm vin]
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A first upper concentration bound ...

For v = ®x, ||z||2 = 1, we have that

E[eMvIB]

2

E[e*Zm v%]

IS YEER))

E[e)\v% 6/\1)% . e)‘v%w]
e)\(1+6)

2

E[eM] E[e?E] - - - E[e ]

oA(1+3)



A first upper concentration bound ...

For v = @z, ||z|2 = 1, we have that

E[eMvI3]

IS YEER))
E[eAv% e/\US R 6)\1}%/1]
eM1+6)

E[e)\vf] E[e)\vg] . E[e)"UJQVI]
eMN1+4)

E M2\ M
= % (since vy, i.i.d.)
e



A first upper concentration bound ...

For v = ®x, ||x|]2 = 1, we have that

(B[N

2
P(HUHZ > 1"‘5) < T A1)

v ~ Normal(0, M 1)



A first upper concentration bound ...

For v = @z, ||x|]2 = 1, we have that

(E[eA”%])M B
P([[v]3>1+0) < Ty U ~ Normal(0, M 1)
It is known that
)\UZ 1
E[e] = ——— for A < M/2.

V1—2)\/M



A first upper concentration bound ...

For v = ®x, ||z|]2 = 1, we have that

(B[

2
P(|lv]z >1+0) < AT

vy ~ Normal(0, M~ 1)

And so

_ M2
P(|lv|2>1+6) < ez /M VA< M/2
(lell; > 1+0) < { T—55737 < M/



A first upper concentration bound ...

We have

o~ 2M(1+6)/M

2 P
P([o|3>1+6) < ( YT

M/2
) VA< M/2

Choose
M6

" 2(1+9)
(easy to see that in this case A\ < M/2).

A



A first upper concentration bound ...

We have

3 M2
P(|lv|2>1+6) < em /M VA< M/2

Choose
M6

A= — =
2(1+9)
(easy to see that in this case A < M/2).
And so

P(|[v]3>1+0) < ((1+5)e—5)M/2.



The upper concentration bound

We have y
P(H’UH% > 1+5) < ((1_‘_5)676) .

b|Ue: 1 + (5’ red: 657(62763)/2

25

15




The upper concentration bound

We have »
P(H”H% > 1—|—5) < ((1+5)6—6> '
and so o
P(|v]2>1+06) < e (O"-0)M/4



The lower concentration bound

The lower bound follows the exact same sequence of steps:

B M/2
P(HUH2<1—5) < M
2 “\1+23/M

M/2 M§
< ((1 - 5)66) / by taking A\ =

2(1—0)
< 6—(62—63)M/4




The Johnson-Lindenstrauss Lemma

We have shown that for any fixed z € RY
1=d)lzl3 < @i < (1+36)]|3
with probability exceeding 1 — 2e—9°M/8,

A simple application of the union bound means that for any set of K

vectors 1, xs, ..., XL, the above holds with probability exceeding
1—2Ke 0°M/8



The Johnson-Lindenstrauss Lemma

Theorem: (J&L, 1984): Let Q be a arbitrary set of @ vectors in RY, and
let ® be an M x N random linear mapping. Then

(1= 0)llzs —@2lf < [P(z1— @)l < (1+0)llz1 — 223

for all x1,xo € Q with

P (Failure) < Q% " M/8 < ¢

when

M > % [log(Q) + log (1) + 0.7]



The Johnson-Lindenstrauss Lemma

() points

® embeds to precision ¢ with probability ¢ when

M > % [2 log(Q) + log (1> + 0.7]
é €



Concentration bound

We have: For any fixed © € RY

L=lzl3 < @i < (1+3)]|3
with probability exceeding 1 — 269" M/8,

We want: this for all 25-sparse x simultaneously...



A single 25-dimensional subspace

Theorem: Let V' be a 25-dimensional subspace of R™. Then

2
P (sup Il ~ ]3] > 5) < 2002502
xeV

As before, it is enough to prove this for

xeBy={xecV:|x|=1}



Covering the sphere

An e-net for By :

unit sphere By balls of radius €

for every x € By, there is a y € Net such that ||z — y|j2 <€

N(By,e¢) is the size of the smallest e-net



Covering the sphere

unit sphere By balls of radius €

It is a fact that




From discrete to continuous

Lemma: Fix 0 < e < 1/2, and let N be the minimal e-net for By. Then

1
sup ||| @3 — |zl <
xEBy

2 2
S 1o yef}\)é |”‘I’$H2 - H:EHQ‘



A single 25-dimensional subspace

Theorem: Let V' be a 25-dimensional subspace of R™. Then
_ 52
P (sup Il - ]| > 5) < 2.0 02
xzecV

where the constant 1/32 =1/4-1/8 (1/8 is from the previous theorem).



A single 25-dimensional subspace

Theorem: Let V' be a 25-dimensional subspace of RY. Then
P (sup Il - ]3] > 5) < 2.0 02
xzcV
where the constant 1/32 =1/4-1/8 (1/8 is from the previous theorem).

So ® is “well-conditioned” on V when

M > Const-S



A single 25-dimensional subspace

Theorem: Let V be a 25-dimensional subspace of RY. Then
Y
P (sup @l ~ ]| > 5) < 2.9 02
zeV
where the constant 1/32 =1/4-1/8 (1/8 is from the previous theorem).

We want this for all subspaces in which 2S-sparse signals live...



A single 25-dimensional subspace

Theorem: Let V be a 25-dimensional subspace of RY. Then
Y
P (sup Il ~ ]3] > 5) < 2.9 02
xzeV
where the constant 1/32 =1/4-1/8 (1/8 is from the previous theorem).

We want this for all subspaces in which 2S-sparse signals live...

There are (é\é) < (%?)25 such subspaces...



All 25-dimensional subspaces

For I C {1,..., N}, let
Br={zeRY : 2,=0, v ¢TI, |z =1}.

Theorem:

P max sup (@l ~ 213 > 5] < 2 NeN™ s s
r<25 2o = “\2s



All 25-dimensional subspaces

Theorem:

P 2 2 Ne\%® 25 —52M/32
sup \H<I>a:||2 - ||az||2‘ >§l <2 25 925 .
all 2S sparse x =

— plog2+2S log(Ne/28)+25S log 9—52M /32

Which is to say
(1-d)llzl; < |®z|3 < (1+4)]x|3 V¥ 2S-sparsex
with high probability when

Const

M o> =

Slog(N/S)



Sparse Recovery using /1 minimization



Sparse recovery

We will show the following:
Let @ be an M x N matrix that is an approximate isometry for 3.5-sparse

vectors. Let &g be an S-sparse vector, and suppose we observe y = ®xy.
Given y, the solution to

min ||z||; subjectto Pz =1y
xT

is exactly x.



Moving to the solution

min ||x|[; such that ®x =1y
xr
Call the solution to this . Set

h:a:ﬁ—mo.



Moving to the solution

min ||z||; such that ®x =1y
€T
Call the solution to this . Set

h:wﬂ—azo.

Two things must be true:

e Ph=0
Simply because both z* and x are feasible: ®x! =y = Pz

o [[zo+ Al < zollr
Simply because o + h = 2!, and ||z!||; < ||zo]|1



Moving to the solution

min [|z|; suchthat ®x =1y
€T
Call the solution to this . Set

h:mﬁ—mo.

Two things must be true:

o Ph =0
Simply because both =¥ and x( are feasible: ®x! =y = Pz,

° [lzo + hljy < |[l@olh
Simply because xo + h =z, and ||z*||; < ||zol|1

We'll show that if @ is 35-RIP, then these conditions are incompatible
unless h =0



Geometry

H={x:<1>x=y} %o

FAILURE

Two things must be true:
o Ph =0
° ||z + k1 < [lwolly




Cone condition

For T'C {1,..., N}, define hyr € R as

hr(y) = {3(7) z le:

Let I'g be the support of xg. For any “descent vector” h, we have

lhrelli < [lhrllx



Cone condition

For T'C {1,..., N}, define hr € RV as

hr(y) = {g(fy) z Z;

Let Iy be the support of xy. For any “descent vector” h, we have

lhrglli < [lhryllx

Why? The triangle inequality..
[Zollr = [lo + hll1 = [|@o + hr, + hrgl

> [lzo + hrglli — [lhr, |11
= [lzoll1 + [[hrglln — [l 1



Cone condition

ForT'C {1,...,N}, define hr € RY as

hr(y) = {3(7) z ;11:

Let 'y be the support of xy. For any “descent vector” h, we have
[hrglli < I
We will show that if ® is 3S-RIP, then
®h =0 = |[hp1 < plhrgh

for some p < 1, and so h = 0.



Some basic facts about ¢, norms

° [lhrflec < [lhrll2 < [Ar(l

o [[Ar|1 < V/IT|- [lhrll2
o [lhrll2 < V/IT| - [lhrllco



Dividing up hr¢

Recall that I’y is the support of xq

Fix h € Null(®). Let

I'y = locations of 25 largest terms in hpg,

'y = locations next 25 largest terms in hre,



Dividing up hr¢

Recall that I'g is the support of xg
Fix h € Null(®). Let

I'y = locations of 25 largest terms in hpg,

'y = locations next 25 largest terms in hre,

Then

0= @R[> =120} _hr,)l2 = |®(hr, + hr))l2 = | Y $hr, |2

Jj=1 Jj=2



Dividing up hr¢

Recall that I'g is the support of xg

Fix h € Null(®). Let

I'y = locations of 25 largest terms in hpg,

I’y = locations next 25 largest terms in hre,

Then

0=[®hl2 = 1B hr,)ll2 > [|®(hr, + hr)ll2 — D> ®hrll2

Jz1 Jj=2

> [|®(hr, + hr,)|l2 = D [ @hr; |2

Jj=2



Dividing up hr¢

Recall that I'g is the support of xq
Fix h € Null(®). Let

Iy = locations of 25 largest terms in hre,

Iy = locations next 25 largest terms in hre,

Then

1®(hr, + hry)llz < > 1@k, |2
j>2



Dividing up hr¢

Recall that I'g is the support of xq
Fix h € Null(®). Let

Iy = locations of 2.5 largest terms in hre,

Iy = locations next 2S5 largest terms in hre,

Applying the 35-RIP gives
V1 =035 |lhry + hr, |2 < ||®(hr, + hr,)|l2

<D l®@hrlla < Y V1 +bas|hry o

5>2 j>2



Dividing up hr¢

Recall that I'g is the support of xg
Fix h € Null(®). Let

Iy = locations of 25 largest terms in hrg,

I'y = locations next 25 largest terms in hrg,

Applying the 35-RIP gives

14+ dog
lhre +hryll2 < /37— > " |lhr, 2
35 453




Dividing up hr¢

Recall that I'g is the support of xg

Fix h € Null(®). Let

I'y = locations of 25 largest terms in hpg,

I'y = locations next 2.5 largest terms in hp(c),

Then

1+ d2s
[hro + hr, 2 < \/;Z\/?SH’%HOO

Jj=2

since [|hr;[l2 < V25| hr, |~



Dividing up hr¢

Recall that I'g is the support of xg

Fix h € Null(®). Let

Iy = locations of 25 largest terms in hpg,

I'y = locations next 25 largest terms in hre,

Then

1+ dog 1
h h < 4/ hr.
H ro + FlHQ = 1 — 039 ; \/ﬁH F,]Hl

since |[hr, [l < ggllhr; [l



Dividing up hr¢

Recall that I'g is the support of xg
Fix h € Null(®). Let

I'y = locations of 25 largest terms in hpg,

'y = locations next 25 largest terms in hre,

Which means
1+ 0z [lhrglh

h <
Aty + hr,ll2 < 035 V23




Dividing up hr¢

Recall that I'g is the support of xg
Fix h € Null(®). Let

I'y = locations of 25 largest terms in hf‘g,

Iy = locations next 25 largest terms in hre,

Working to the left

1+ das llhrglla
1—4d3s5 /28

lhrglla < l[hrg + b2 <




Dividing up hr¢

Recall that I'g is the support of xg
Fix h € Null(®). Let

I'y = locations of 25 largest terms in hf‘g,

Iy = locations next 25 largest terms in hre,

Working to the left

hr 1+ a5 |lhrell1
IRl o yp e < ey + ez < 25 10rg

NG - 1—463s5 /28




Wrapping it up

We have shown

1+0d25 | S
lhrolls < \/ 1= 525 V %llhrg\ll

= pllhrgll

g | LHos
2(1 — d35)

for



Wrapping it up

We have shown

1+0d25 | S
lrglh < 7522 o gl

= pllhrell

p= 1+ (525
2(1 — d3s)

Taking dog < d39 < 1/3 = p<1.

for



SUCCESS!

Theorem: Let ® be an M x N matrix that is an approximate isometry
for 35-sparse vectors. Let oy be an S-sparse vector, and suppose we
observe y = ®x(. Given y, the solution to

min ||z||; subjectto Pz =1y
€T

is exactly x.



Other fundamental results



lterative methods for sparse recovery

There are other iterative methods that have similar recovery guarantees:
@ orthogonal matching pursuit (Tropp, Zhang, Foucart, and others)
@ iterative hard thresholding (Blumensath, Davies)

o ‘iterative model selection” CoSAMP, etc. (Tropp, Needell, others)



Deterministic matrices

o Coherence bounds: can recover S-sparse vector from

S < —, p = max inner product between columns

=~

Donoho, Huo, Elad, Bruckstein, Nielson, Gribonval, ...

@ Connections to channel coding:
Specially constructed matrices coupled with specialized “decoding”
algorithms can yield similar performance guarantees
(Tarokh and collaborators on low-density frames)

@ Other deterministic constructions based on Vandermonde and Fourier
matrices yield weaker (but easily verifiable) bonds



Phase transitions for Gaussian + /4

Donoho and Tanner get sharp results by looking at properties of projected
polytopes:

A:llo

Combinatorial Search!

S/N

F solves £,

M/N



Sharp upper bounds for Gaussian + /;

Chandrasekaran, Parrilo, Recht, and Wilsky get a sharp upper bound by
estimating the Gaussian width of the descent cone

M > w(T(x))?, T (x) = descent cone from x

w(X)=E[ sup (g,v)], g~ Normal(0,I)
vexXnNsSN-1

For ¢1 problem, xg S-sparse,

w(T(mO))2 < 2Slog((N —S)/S+1)



Applications of random projections: Hyperspectral imaging

256 frequency bands, 10s of megapixels, 30 frames per second ...



Applications of random projections: Coded ADCs

Multichannel ADC/receiver for identifying radar pulses
Covers ~ 3 GHz with ~ 400 MHz sampling rate



Matrices with structured randomness for sparse recovery

@ Subsampled rows of “incoherent” orthogonal matrix

ER AT

applications: MRI, channel estimation, radar, ...

@ Random convolution + subsamplmg

applications: computed imaging, radar, sonar, ...

o Multi-toeplitz matrices

applications: MIMO channel estimation, fast forward modeling, ...



Compressive sensing with structured randomness

Subsampled rows of “incoherent” orthogonal matrix

Can recover S-sparse x with
M =z Slog® N

measurements

Candes, R, Tao, Rudelson, Vershynin, Tropp, ...



Accelerated MRI

SPIR-iT

(Lustig et al. '08)



Matrices for sparse recovery with structured randomness

Random convolution + subsampling

Universal; Can recover S-sparse xg with

M =z Slog® N

Applications include:

radar imaging

sonar imaging

seismic exploration

channel estimation for communications
super-resolved imaging

R, Bajwa, Haupt, Tropp, Rauhut, ...



Matrices for sparse recovery with structured randomness

Multi-toeplitz:

Can recover S-sparse xg with

M 2z Slog" N

R, Neelamani



Application: simultaneous activation

@ Run a single simulation with all of the sources activated

simultaneously with random waveforms
@ The channel responses interfere with one another, but the randomness

codes” them in such a way that they can be separated later

.0 Iy IHIII Il HI\II\I\l I |
S UL ﬂ
i

®
~ Time(s) o

receiver

set “encoding”

Y

12

receiver

candidate model
set



