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Agenda

Today: Mathematical foundations of compressive sensing
Random embeddings and recovery using `1

Saturday: Low rank recovery and bilinear problems in signal processing

Sunday: Dynamic recovery, subspace matching and CS on the continuum



Linear systems of equations are ubiquitous



Linear systems of equations are ubiquitous

All of these can be abstracted to

y = Ax



Linear systems of equations are ubiquitous

Model: 
y

 =


A




x


y: data coming off of sensor
A: mathematical (linear) model for sensor
x: signal/image to reconstruct



Classical: When can we stably “invert” a matrix?

Suppose we have an M ×N observation matrix A with M ≥ N
(MORE observations than unknowns), through which we observe

y = Ax0 + noise

Standard way to recover x0, use the pseudo-inverse

solve min
x
‖y −Ax‖22 ⇔ x̂ = (ATA)−1ATy

Q: When is this recovery stable? That is, when is

‖x̂− x0‖22 ∼ ‖noise‖22 ?

A: When the matrix A preserves distances ...

‖A(x1 − x2)‖22 ≈ ‖x1 − x2‖22 for all x1,x2 ∈ RN
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Sparsity

wavelet transform zoom



Wavelet approximation

Take 1% of largest coefficients, set the rest to zero (adaptive)

original approximated

rel. error = 0.031



When can we stably recover an S-sparse vector?

y ! x0=

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ keeps sparse signals separated

‖Φ(x1 − x2)‖22 ≈ ‖x1 − x2‖22
for all S-sparse x1,x2
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When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ keeps sparse signals separated

‖Φ(x1 − x2)‖22 ≈ ‖x1 − x2‖22

for all S-sparse x1,x2

To recover x0, we might solve

min
x

#NonZeroTerms(x) subject to Φx ≈ y

This program is computationally intractable



When can we stably recover an S-sparse vector?

Now we have an underdetermined M ×N system Φ
(FEWER measurements than unknowns), and observe

y = Φx0 + noise

We can recover x0 when Φ keeps sparse signals separated

‖Φ(x1 − x2)‖22 ≈ ‖x1 − x2‖22
for all S-sparse x1,x2

A relaxed (convex) program

min
x
‖x‖1 subject to Φx ≈ y

‖x‖1 =
∑

k |xk|

This program is very tractable (linear program)

The convex program can recover nearly all “identifiable” sparse
vectors, and it is robust.



Intuition for `1

minx ‖x‖2 s.t. Φx = y minx ‖x‖1 s.t. Φx = y!"#$L2 %&'()*+$!&,-$

.'/(+$(01/,'(2
34)4313$L5 (&.1+4&)
4($/.3&(+$never sparse

!"#$L1 !%&'(

)*+*),)$L1 (%-,.*%+
/$L0 (01&(2(.$(%-,.*%+$*3

random orientation
dimension N-M



What kind of matrices keep sparse signals separated?

Φ

!"#$%&&
"'()'*%*+,&

S

-!*.'(&
%*+-/%,&

±1

0"'()-%,,%.&
(%!,1-%(%*+,2&

M

N+'+!3&-%,'31#'*45!*.6/.+7&8&

Random matrices are provably efficient

We can recover S-sparse x from

M & S · log(N/S)

measurements



Agenda

We will prove (almost from top to bottom) two things:

That an M ×N iid Gaussian random matrix satisfies

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 ∀ 2S-sparse x (1)

with (extraordinarily) high probability when

M ≥ Const · S log(N/S)

Suppose an M ×N matrix Φ obeys (1). Let x0 be an S-sparse
vector, and suppose we observe y = Φx0. Given y, the solution to

min
x
‖x‖`1 subject to Φx = y

is exactly x0.
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Restricted Isometries for Gaussian Matrices



Gaussian random matrices

Each entry of Φ is iid Normal(0,M−1)

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#

.+,%'&),+,(-'/#
M

N

For any fixed x ∈ RN , each measurement is

ym ∼ Normal(0, ‖x‖22/M)



Gaussian random matrices

Each entry of Φ is iid Normal(0,M−1)

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#

.+,%'&),+,(-'/#
M

N

For any fixed x ∈ RN , we have

E[‖Φx‖22] = ‖x‖22

the mean of the measurement energy is exactly ‖x‖22



Gaussian random matrices

Each entry of Φ is iid Normal(0,M−1)

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#

.+,%'&),+,(-'/#
M

N

For any fixed x ∈ RN , we have

P
(∣∣‖Φx‖22 − ‖x‖22∣∣ < δ‖x‖22

)
≥ 1− 2e−Mδ2/8



Gaussian random matrices

Each entry of Φ is iid Normal(0,M−1)

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#

.+,%'&),+,(-'/#
M

N

For all 2S-sparse x ∈ RN , we have

P
(

max
x

∣∣‖Φx‖22 − ‖x‖22∣∣ < δ‖x‖22
)
≥ 1− 2ec1S log(N/S)e−c2Mδ2

So we can make this probability close to 1 by taking

M ≥ Const · S log(N/S)



Random projection of a fixed vector

For Gaussian random Φ operating on a fixed x ∈ RN

‖Φx‖22 ≈ ‖x‖22

Theorem: Let Φ be an M ×N matrix whose entries are iid Gaussian

Φi,j ∼ Normal(0, 1/M).

Then
E ‖Φx‖22 = ‖x‖22,

as, with v = Φx,

E

[
M∑
m=1

v2
m

]
=

M∑
m=1

E[v2
m] =

M∑
m=1

1

M
‖x‖22 = ‖x‖22,

since vm = 〈x,φm〉 ∼ Normal(0,M−1‖x‖22)



Random projection of a fixed vector

For Gaussian random Φ operating on a fixed x ∈ RN

‖Φx‖22 ≈ ‖x‖22

Theorem: Let Φ be an M ×N matrix whose entries are iid Gaussian

Φi,j ∼ Normal(0, 1/M).

Then
E ‖Φx‖22 = ‖x‖22,

and for any 0 < δ ≤ 1

P
(∣∣‖Φx‖22 − ‖x‖22∥∥ > δ

)
≤ 2 exp

(
−(δ2 − δ3)M

4

)
≤ 2 exp

(
−δ2M/8

)
for δ ≤ 1/2.



The Markov inequality

Let Y be a positive random variable. Then for all t > 0

P (Y ≥ t) ≤ E[Y ]

t



The Markov inequality

Let Y be a positive random variable. Then for all t > 0

P (Y ≥ t) ≤ E[Y ]

t

Proof:

E[Y ] =

∫ ∞
0

y fY (y) dy

≥
∫ ∞
t

y fY (y) dy

≥ t
∫ ∞
t

fY (y) dy

= tP (Y ≥ t) .



The Markov inequality

Let Y be a positive random variable. Then for all t > 0

P (Y ≥ t) ≤ E[Y ]

t

Also:

P
(
Y 2 ≥ t2

)
≤ E[Y 2]

t2

P
(
Y 3 ≥ t3

)
≤ E[Y 3]

t3

P
(
eλY ≥ eλt

)
≤ E[eλY ]

eλt
λ > 0

...

P (φ(Y ) ≥ φ(t)) ≤ E[φ(Y )]

φ(t)

for any strictly monotonic φ(·).



The Markov inequality

Let Y be a positive random variable. Then for all t > 0

P (Y ≥ t) ≤ E[Y ]

t

Chernoff-type bound:

P (Y ≥ t) ≤ E[eλY ]

eλt
for any λ > 0.



A first upper concentration bound ...

For v = Φx, ‖x‖2 = 1, we have that

P
(
‖v‖22 > 1 + δ

)
≤ E[eλ‖v‖

2
2 ]

eλ(1+δ)
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A first upper concentration bound ...

For v = Φx, ‖x‖2 = 1, we have that

P
(
‖v‖22 > 1 + δ

)
≤ E[eλ‖v‖

2
2 ]

eλ(1+δ)

=
E[eλ

∑
m v2

m ]

eλ(1+δ)

=
E[eλv

2
1eλv

2
2 · · · eλv2

M ]

eλ(1+δ)

=
E[eλv

2
1 ] E[eλv

2
2 ] · · ·E[eλv

2
M ]

eλ(1+δ)

=
(E[eλv

2
1 ])M

eλ(1+δ)
(since vm i.i.d.)



A first upper concentration bound ...

For v = Φx, ‖x‖2 = 1, we have that

P
(
‖v‖22 > 1 + δ

)
≤ (E[eλv

2
1 ])M

eλ(1+δ)
, v1 ∼ Normal(0,M−1)



A first upper concentration bound ...

For v = Φx, ‖x‖2 = 1, we have that

P
(
‖v‖22 > 1 + δ

)
≤ (E[eλv

2
1 ])M

eλ(1+δ)
, v1 ∼ Normal(0,M−1)

It is known that

E[eλv
2
1 ] =

1√
1− 2λ/M

for λ < M/2.



A first upper concentration bound ...

For v = Φx, ‖x‖2 = 1, we have that

P
(
‖v‖22 > 1 + δ

)
≤ (E[eλv

2
1 ])M

eλ(1+δ)
, v1 ∼ Normal(0,M−1)

And so

P
(
‖v‖22 > 1 + δ

)
≤
(
e−2λ(1+δ)/M

1− 2λ/M

)M/2

∀ λ < M/2



A first upper concentration bound ...

We have

P
(
‖v‖22 > 1 + δ

)
≤
(
e−2λ(1+δ)/M

1− 2λ/M

)M/2

∀ λ < M/2

Choose

λ =
Mδ

2(1 + δ)

(easy to see that in this case λ < M/2).



A first upper concentration bound ...

We have

P
(
‖v‖22 > 1 + δ

)
≤
(
e−2λ(1+δ)/M

1− 2λ/M

)M/2

∀ λ < M/2

Choose

λ =
Mδ

2(1 + δ)

(easy to see that in this case λ < M/2).

And so

P
(
‖v‖22 > 1 + δ

)
≤
(

(1 + δ)e−δ
)M/2

.



The upper concentration bound

We have

P
(
‖v‖22 > 1 + δ

)
≤
(

(1 + δ)e−δ
)M/2

.

blue: 1 + δ, red: eδ−(δ2−δ3)/2
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1
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The upper concentration bound

We have

P
(
‖v‖22 > 1 + δ

)
≤
(

(1 + δ)e−δ
)M/2

.

and so
P
(
‖v‖22 > 1 + δ

)
≤ e−(δ2−δ3)M/4



The lower concentration bound

The lower bound follows the exact same sequence of steps:

P
(
‖v‖22 < 1− δ

)
≤
(
e2(1−δ)λ/M

1 + 2λ/M

)M/2

≤
(

(1− δ)eδ
)M/2

by taking λ =
Mδ

2(1− δ)
≤ e−(δ2−δ3)M/4



The Johnson-Lindenstrauss Lemma

We have shown that for any fixed x ∈ RN

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22

with probability exceeding 1− 2e−δ
2M/8.

A simple application of the union bound means that for any set of K
vectors x1,x2, . . . ,xK , the above holds with probability exceeding
1− 2Ke−δ

2M/8...



The Johnson-Lindenstrauss Lemma

Theorem: (J&L, 1984): Let Q be a arbitrary set of Q vectors in RN , and
let Φ be an M ×N random linear mapping. Then

(1− δ)‖x1 − x2‖22 ≤ ‖Φ(x1 − x2)‖22 ≤ (1 + δ)‖x1 − x2‖22

for all x1,x2 ∈ Q with

P (Failure) ≤ Q2e−δ
2M/8 ≤ ε

when

M ≥ 8

δ2

[
log(Q) + log

(
1

ε

)
+ 0.7

]



The Johnson-Lindenstrauss Lemma

Z4++;&A'3&concentration inequality?&R+4&3%>&8&! O<

]+%('.$4&3&*+'%)&($)&L&" O< 3%.&43%.+@i P!<&! B')#&
P&G&KE-+/EjLF&$2:FD&"')#&#'/#&*4+,DC&;+4&3--&89C8:&! LC

k+#%(+%2V'%.$%()430(( V$@@3
T($$&3-(+&W3(/0*)3C&J0*)3a&R43%[-C&P3$#343a&l=#-'+*)3(a&S%.>[C&P+)B3%'X

�

Q points

Φ embeds to precision δ with probability ε when

M ≥ 8

δ2

[
2 log(Q) + log

(
1

ε

)
+ 0.7

]



Concentration bound

We have: For any fixed x ∈ RN

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22

with probability exceeding 1− 2e−δ
2M/8.

We want: this for all 2S-sparse x simultaneously...



A single 2S-dimensional subspace

Theorem: Let V be a 2S-dimensional subspace of RN . Then

P

(
sup
x∈V

∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

)
≤ 2 · 92S · e−δ2M/32

As before, it is enough to prove this for

x ∈ BV = {x ∈ V : ‖x‖2 = 1}



Covering the sphere

An ε-net for BV :

balls of radius ✏

unit sphere BV

unit sphere BV

unit sphere BV

for every x ∈ BV , there is a y ∈ Net such that ‖x− y‖2 ≤ ε

N(BV , ε) is the size of the smallest ε-net



Covering the sphere

balls of radius ✏

unit sphere BV

unit sphere BV

unit sphere BV

It is a fact that

N(BV , ε) ≤
(

1 +
2

ε

)2S



From discrete to continuous

Lemma: Fix 0 ≤ ε < 1/2, and let Nε be the minimal ε-net for BV . Then

sup
x∈BV

∣∣‖Φx‖22 − ‖x‖22∣∣ ≤ 1

1− 2ε
max
y∈Nε

∣∣‖Φx‖22 − ‖x‖22∣∣



A single 2S-dimensional subspace

Theorem: Let V be a 2S-dimensional subspace of RN . Then

P

(
sup
x∈V

∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

)
≤ 2 · 92S · e−δ2M/32

where the constant 1/32 = 1/4 · 1/8 (1/8 is from the previous theorem).
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P

(
sup
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∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

)
≤ 2 · 92S · e−δ2M/32

where the constant 1/32 = 1/4 · 1/8 (1/8 is from the previous theorem).

So Φ is “well-conditioned” on V when

M ≥ Const · S
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A single 2S-dimensional subspace

Theorem: Let V be a 2S-dimensional subspace of RN . Then

P

(
sup
x∈V

∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

)
≤ 2 · 92S · e−δ2M/32

where the constant 1/32 = 1/4 · 1/8 (1/8 is from the previous theorem).

We want this for all subspaces in which 2S-sparse signals live...

There are
(
N
2S

)
≤
(
Ne
2S

)2S
such subspaces...



All 2S-dimensional subspaces

For Γ ⊂ {1, . . . , N}, let

BΓ =
{
x ∈ RN : xγ = 0, γ 6∈ Γ, ‖x‖2 = 1

}
.

Theorem:

P

(
max
|Γ|≤2S

sup
x∈BΓ

∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

)
≤ 2

(
Ne

2S

)2S

92S e−δ
2M/32



All 2S-dimensional subspaces

Theorem:

P

(
sup

all 2S sparse x

∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

)
≤ 2

(
Ne

2S

)2S

92S e−δ
2M/32

= elog 2+2S log(Ne/2S)+2S log 9−δ2M/32

Which is to say

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 ∀ 2S-sparse x

with high probability when

M ≥ Const

δ2
· S log(N/S)

SUCCESS!!!



Sparse Recovery using `1 minimization



Sparse recovery

We will show the following:

Let Φ be an M ×N matrix that is an approximate isometry for 3S-sparse
vectors. Let x0 be an S-sparse vector, and suppose we observe y = Φx0.
Given y, the solution to

min
x
‖x‖1 subject to Φx = y

is exactly x0.



Moving to the solution

min
x
‖x‖1 such that Φx = y

Call the solution to this x]. Set

h = x] − x0.



Moving to the solution

min
x
‖x‖1 such that Φx = y

Call the solution to this x]. Set

h = x] − x0.

Two things must be true:

Φh = 0
Simply because both x] and x0 are feasible: Φx] = y = Φx0

‖x0 + h‖1 ≤ ‖x0‖1
Simply because x0 + h = x], and ‖x]‖1 ≤ ‖x0‖1



Moving to the solution

min
x
‖x‖1 such that Φx = y

Call the solution to this x]. Set

h = x] − x0.

Two things must be true:

Φh = 0
Simply because both x] and x0 are feasible: Φx] = y = Φx0

‖x0 + h‖1 ≤ ‖x0‖1
Simply because x0 + h = x], and ‖x]‖1 ≤ ‖x0‖1

We’ll show that if Φ is 3S-RIP, then these conditions are incompatible
unless h = 0



Geometry

SUCCESS FAILURE

! 

H = x :"x = y{ }

! 

x
0

! 

h
! 

x
0

! 

h

Two things must be true:

Φh = 0

‖x0 + h‖1 ≤ ‖x0‖1



Cone condition

For Γ ⊂ {1, . . . , N}, define hΓ ∈ RN as

hΓ(γ) =

{
h(γ) γ ∈ Γ

0 γ 6∈ Γ

Let Γ0 be the support of x0. For any “descent vector” h, we have

‖hΓc0
‖1 ≤ ‖hΓ0‖1



Cone condition

For Γ ⊂ {1, . . . , N}, define hΓ ∈ RN as

hΓ(γ) =

{
h(γ) γ ∈ Γ

0 γ 6∈ Γ

Let Γ0 be the support of x0. For any “descent vector” h, we have

‖hΓc0
‖1 ≤ ‖hΓ0‖1

Why? The triangle inequality..

‖x0‖1 ≥ ‖x0 + h‖1 = ‖x0 + hΓ0 + hΓc0
‖1

≥ ‖x0 + hΓc0
‖1 − ‖hΓ0‖1

= ‖x0‖1 + ‖hΓc0
‖1 − ‖hΓ0‖1



Cone condition

For Γ ⊂ {1, . . . , N}, define hΓ ∈ RN as

hΓ(γ) =

{
h(γ) γ ∈ Γ

0 γ 6∈ Γ

Let Γ0 be the support of x0. For any “descent vector” h, we have

‖hΓc0
‖1 ≤ ‖hΓ0‖1

We will show that if Φ is 3S-RIP, then

Φh = 0 ⇒ ‖hΓ0‖1 ≤ ρ‖hΓc0
‖1

for some ρ < 1, and so h = 0.



Some basic facts about `p norms

‖hΓ‖∞ ≤ ‖hΓ‖2 ≤ ‖hΓ‖1

‖hΓ‖1 ≤
√
|Γ| · ‖hΓ‖2

‖hΓ‖2 ≤
√
|Γ| · ‖hΓ‖∞



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Then

0 = ‖Φh‖2 = ‖Φ(
∑
j≥1

hΓj )‖2 ≥ ‖Φ(hΓ0 + hΓ1)‖2 − ‖
∑
j≥2

ΦhΓj‖2



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Then

0 = ‖Φh‖2 = ‖Φ(
∑
j≥1

hΓj )‖2 ≥ ‖Φ(hΓ0 + hΓ1)‖2 − ‖
∑
j≥2

ΦhΓj‖2

≥ ‖Φ(hΓ0 + hΓ1)‖2 −
∑
j≥2

‖ΦhΓj‖2



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Then
‖Φ(hΓ0 + hΓ1)‖2 ≤

∑
j≥2

‖ΦhΓj‖2



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Applying the 3S-RIP gives√
1− δ3S ‖hΓ0 + hΓ1‖2 ≤ ‖Φ(hΓ0 + hΓ1)‖2

≤
∑
j≥2

‖ΦhΓj‖2 ≤
∑
j≥2

√
1 + δ2S‖hΓj‖2



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Applying the 3S-RIP gives

‖hΓ0 + hΓ1‖2 ≤
√

1 + δ2S

1− δ3S

∑
j≥2

‖hΓj‖2



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Then

‖hΓ0 + hΓ1‖2 ≤
√

1 + δ2S

1− δ3S

∑
j≥2

√
2S‖hΓj‖∞

since ‖hΓj‖2 ≤
√

2S‖hΓj‖∞



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Then

‖hΓ0 + hΓ1‖2 ≤
√

1 + δ2S

1− δ3S

∑
j≥1

1√
2S
‖hΓj‖1

since ‖hΓj‖∞ ≤ 1
2S ‖hΓj−1‖1



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Which means

‖hΓ0 + hΓ1‖2 ≤
√

1 + δ2S

1− δ3S

‖hΓc0
‖1√

2S



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Working to the left

‖hΓ0‖2 ≤ ‖hΓ0 + hΓ1‖2 ≤
√

1 + δ2S

1− δ3S

‖hΓc0
‖1√

2S



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Working to the left

‖hΓ0‖1√
S

≤ ‖hΓ0‖2 ≤ ‖hΓ0 + hΓ1‖2 ≤
√

1 + δ2S

1− δ3S

‖hΓc0
‖1√

2S



Wrapping it up

We have shown

‖hΓ0‖1 ≤
√

1 + δ2S

1− δ3S

√
S

2S
‖hΓc0

‖1

= ρ‖hΓc0
‖1

for

ρ =

√
1 + δ2S

2(1− δ3S)



Wrapping it up

We have shown

‖hΓ0‖1 ≤
√

1 + δ2S

1− δ3S

√
S

2S
‖hΓc0

‖1

= ρ‖hΓc0
‖1

for

ρ =

√
1 + δ2S

2(1− δ3S)

Taking δ2S ≤ δ3S < 1/3 ⇒ ρ < 1.



SUCCESS!!

Theorem: Let Φ be an M ×N matrix that is an approximate isometry
for 3S-sparse vectors. Let x0 be an S-sparse vector, and suppose we
observe y = Φx0. Given y, the solution to

min
x
‖x‖1 subject to Φx = y

is exactly x0.



Other fundamental results



Iterative methods for sparse recovery

There are other iterative methods that have similar recovery guarantees:

orthogonal matching pursuit (Tropp, Zhang, Foucart, and others)

iterative hard thresholding (Blumensath, Davies)

“iterative model selection” CoSAMP, etc. (Tropp, Needell, others)



Deterministic matrices

Coherence bounds: can recover S-sparse vector from

S .
1

µ
, µ = max inner product between columns

Donoho, Huo, Elad, Bruckstein, Nielson, Gribonval, ...

Connections to channel coding:
Specially constructed matrices coupled with specialized “decoding”
algorithms can yield similar performance guarantees
(Tarokh and collaborators on low-density frames)

Other deterministic constructions based on Vandermonde and Fourier
matrices yield weaker (but easily verifiable) bonds



Phase transitions for Gaussian + `1

Donoho and Tanner get sharp results by looking at properties of projected
polytopes:

x0

→

Ax0

S/N

M/N



Sharp upper bounds for Gaussian + `1

Chandrasekaran, Parrilo, Recht, and Wilsky get a sharp upper bound by
estimating the Gaussian width of the descent cone

Null(A)

M ≥ ω(T (x))2, T (x) = descent cone from x

ω(X ) = E[ sup
v∈X∩SN−1

〈g,v〉], g ∼ Normal(0, I)

For `1 problem, x0 S-sparse,

ω(T (x0))2 ≤ 2S log((N − S)/S + 1)



Applications of random projections: Hyperspectral imaging

256 frequency bands, 10s of megapixels, 30 frames per second ...



Applications of random projections: Coded ADCs

Multichannel ADC/receiver for identifying radar pulses
Covers ∼ 3 GHz with ∼ 400 MHz sampling rate



Matrices with structured randomness for sparse recovery

Subsampled rows of “incoherent” orthogonal matrix

applications: MRI, channel estimation, radar, . . .

Random convolution + subsampling

applications: computed imaging, radar, sonar, . . .

Multi-toeplitz matrices

G1 G2 · · ·

applications: MIMO channel estimation, fast forward modeling, . . .



Compressive sensing with structured randomness

Subsampled rows of “incoherent” orthogonal matrix

Can recover S-sparse x0 with

M & S logaN

measurements

Candes, R, Tao, Rudelson, Vershynin, Tropp, . . .



Accelerated MRI
SPIR-iT with Wavelet CS

ARC SPIR-iT

(Lustig et al. ’08)



Matrices for sparse recovery with structured randomness

Random convolution + subsampling

Universal; Can recover S-sparse x0 with

M & S logaN

Applications include:

radar imaging

sonar imaging

seismic exploration

channel estimation for communications

super-resolved imaging

R, Bajwa, Haupt, Tropp, Rauhut, . . .



Matrices for sparse recovery with structured randomness

Multi-toeplitz:

G1 G2 · · ·

Can recover S-sparse x0 with

M & S logaN

R, Neelamani



Application: simultaneous activation

Run a single simulation with all of the sources activated
simultaneously with random waveforms

The channel responses interfere with one another, but the randomness
“codes” them in such a way that they can be separated later
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